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          1   Introduction 

 Growth constraints and stress result in signi fi cant crop losses and therefore the 
mechanisms underlying endurance and adaptation to these changes have long been 
the focus of intense research (Bray  2004  ) . Kültz (2005) elaborated two types of 
responses to a particular kind of stress (1) stress speci fi c adaptive responses and 
(2) general responses that confer basic protection. Temperature is one of the impor-
tant factors, which determine the distribution of plants geographically in an opti-
mum environment where they can survive and complete their life cycle. Chilling 
stress (<20 °C) is a direct result of low temperature effects on cellular macromole-
cules, which leads to slowing of metabolism, solidi fi cation of cell membranes, and 
loss of membrane functions (Jewell et al. 2010). Chilling has been known to severely 
inhibit plant reproductive development in many crop plant species such as rice dis-
playing sterility when exposed to chilling temperatures during anthesis (Jiang et al. 
2002). The sudden changes in the plant’s environment also lead to the slower growth 
and low yield because of the shunting of the resources from reproductive processes 
to metabolic process to achieve tolerance (Smith and Stitt  2007  ) . Chilling stress 
effects include reduced leaf expansion and growth (Sowinski et al.  2005 ; Rymen 
et al.  2007  ) , wilting (Bagnall et al.  1983  ) , chlorosis (Yoshida et al.  1996  ) , and may 
lead to necrosis and impaired development of reproductive components, restricted 
seed, and pod development in sensitive plants species (Kaur et al.  2008 ; Ohnishi 
et al.  2010 ; Kumar et al.  2011  ) , which ultimately reduces the yield of grain crops 
(Suzuki et al.  2008  ) . 

 The plants are of sessile nature and so they have developed some speci fi c mecha-
nisms to deal with temperature changes in their environment. Hällgren and Öquist 
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(1990) have divided the plants into chilling sensitive, chilling resistant, and freezing 
tolerant types; however the term chilling resistant may be treated as a misnomer 
because it implies that the these plants are able to regulate their temperature. However, 
the plants are poikilotherms so the term may be modi fi ed to a more elaborative 
 ‘chilling tolerant’. In the  fi rst category, ‘chilling sensitive’, the plants show metabolic 
dysfunctions at the exposure of temperatures slightly below the optimum. The 
 chilling tolerant plants are those ones, which survive the lower range of temperatures 
but nonfreezing, than optimum. The freezing tolerant plants also survive the freezing 
conditions and are most hardy of the above classes of plants. 

 Plants experience a wide range of temperature  fl uctuations in natural  environments. 
Thus, they have evolved mechanisms to minimize cellular damage at  temperature 
extremes. Growth at low temperatures (cold acclimation) enables plants to initiate 
signaling cascades and metabolic alterations, which enhance tolerance to freezing 
temperatures (   Chinnusamy et al.  2003  ) . 

 Temperature change in the micro or macro-environment is a very critical factor, 
which determines the growth, development, and physiology of the plant. Some of the 
alterations are visible to us as cold stress symptoms but the main role players are always 
behind the curtain, which take part in various biochemical and molecular processes in 
response to cold temperature exposure. These processes together can be termed as ‘low 
temperature induced signal transduction (LTST). These processes are decidedly 
bene fi cial to the plant because these are the strategy measures to cope with the stress 
conditions. Besides the plants also get a very useful character out of these processes i.e. 
stress memory or cold stress acclimation. The LTST leads to the expression of certain 
genes of interest in the nucleus, which through central dogma results in the synthesis of 
some speci fi c proteins. These proteins either structural or enzymes work for the survival 
of plant during stress conditions and the plant acquires stress tolerance. All these behind 
the curtain processes are described in detail in the coming heads of this review. 

 Chilling has been known to cause disruption of DNA strands, reductions in  enzymatic 
activity, rigidi fi cation of membranes, destabilization of protein complexes, stabilization 
of RNA secondary structure, accumulation of reactive oxygen  intermediates (ROIs), 
impairment of photosynthesis, and leakage across membranes ((   Nayyar et al.  2005a,   b, 
  c,   d  )  also (Nayyar and Chander  2004  ) . Different methods have been used to quantify the 
cold tolerance in plants like electrolyte leakage (Patterson et al.  1976 ; (   Nayyar et al. 
 2005a,   b,   c,   d  ) , LT 

50
 , percent survival, and  chlorophyll  fl uorescence imaging (Ehlert and 

Hincha  2008  ) . It has been reported in different scienti fi c writings that cold tolerance in 
plants comes from two ways (1) it is inherent and (2) after cold acclimation. For a better 
understanding of the cold tolerance in plants through cold acclimation, a detailed 
 knowledge of biochemical and molecular methods involved in low temperature sensing 
and signal transduction is required, which is the earliest and most important stage in cold 
acclimation and development of cold tolerance. The main aim of this review is to  discuss 
the  mechanisms of cold sensing mechanisms in plants, the signaling processes and their 
components, which commence thereafter and the resulting tolerance mechanisms. 
Baena-Gonzalez  (  2010  )  has reviewed the various mechanisms that subsequently 
become engaged upon exposure of plants to stress to modulate gene expression in 
response to energy signals (Fig.  2.1 ).   
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312 Facing the Cold Stress by Plants in the Changing Environment…

    2   Low Temperature Sensing 

 Any type of environmental stimulus is sensed by the receptor/osmosensor mole-
cules, which perceive the signal and transmit it to the suitable signal transduction 
pathways. In plants, the identi fi ed receptor/osmosensor molecules include ROP10 
(a small G protein from ROP family) (Zheng et al.  2002  ) , ATHK1 (a homologue of 
yeast SLN1) (Urao et al.  1999  ) , NtC7 (a membrane protein) (Tamura et al. 2003) 

  Fig. 2.1    A schematic four tier mechanism of cold stress response and acquired tolerance in plants. 
Cold tolerance is also known as cold hardening or cold acclimation and it is described as the devel-
opment or increase in tolerance to cold temperatures over time by means of adaptive and resistive 
cellular mechanisms, which are activated in response to stressful cold temperature conditions       
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and Cre1 (a cytokinin sensor and histidine kinase). But the exact sensor for the 
perception of low temperature is still elusive. The research during the last decade 
has indicated that the sensor may be located in the plasma membrane. The signal is 
then transferred through several components of cascade of transduction pathways. 

 Temperature is a key abiotic signal that regulates plant function throughout 
development (Pen fi eld  2008  ) . Alterations in growth temperature act as a stimulus to 
initiate metabolic changes and promote developmental switches. In the  fi rst sight a 
simple question arises—How do plants sense change in temperature or more 
speci fi cally how is lower than optimum temperature sensed by plants? Do they have 
a single thermo-sensor or multiple thermo-sensing mechanisms? The answer lies in 
the fact that plants are having special temperature preceptor organs, which are 
highly sensitive to sense a slight negative or positive change in its environment. 
These receptors not only sense the change in temperature but also inform the  cellular 
headquarters (the nucleus) about the temperature-change condition. Following 
 subheads explain about different mechanisms by means of which the plant senses 
temperature and subsequently frames strategy to cope up with the conditions. 

    2.1   Membrane Rigidi fi cation 

 The cellular membrane is the outermost living part of plant cell. The cellular 
 membrane model as suggested by (Singer and Nicholson  1972  )  gives us much 
 narrowed down information and more appropriately clues about the way of sensing 
temperature through cell membrane. The cellular membrane is  fl uid-mosaic in 
nature and is formed of a bilayer of phospholipids, which is sandwiched between 
the proteins. The phospholipid bilayer is interspersed by globular proteins, large 
tunnel proteins, and carbohydrates. The membrane is  fl exible and semipermeable in 
nature. Each movement in plasma membrane is by means of its own activation 
energy i.e. temperature dependence. As the membrane is exposed to temperature 
below optimum, it undergoes phase transition from liquid crystalline to gel phase. 
This causes the membrane movements to slow down and the membrane becomes 
more static than dynamic or rigid (Vigh et al.  2007  ) . Therefore, it may be implicated 
that plasma membrane is a highly organized system, which plays an important role 
as communication interface between the cell and extracellular environment. 
Generally, chilling stress results in loss of membrane integrity and solute leakage. 
During the last few years, these observations have been documented as the same 
responses can be mimicked by plants in response to certain agents like DMSO at the 
ambient temperature. It has also been observed that the membrane  fl uidizing 
 chemicals like benzyl alcohol, inhibit the responses of plants at considerably low 
temperatures also (Orvar et al.  2000 ; Sangwan et al.  2001,   2002 ; Vaultier et al. 
 2006  ) . Therefore, it may be suggested here that the primary reception or perception 
is at the membrane level (Örvar et al. 2001). Injuries due to low temperature are 
mostly due to decrease in membrane  fl uidity; this is called rigidi fi cation (Hayashi 
and Maeda  2006  ) . Alterations in the membrane  fl uidity have been demonstrated to 
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332 Facing the Cold Stress by Plants in the Changing Environment…

initiate temperature-signaling pathways in a variety of organisms, tempting speculation 
that similar mechanisms may operate in plants (reviewed in Samach and Wigge 
 2005  ) . The effects of low temperature on plasma membrane have been demonstrated 
by many authors in different experiments and in different organisms e.g. in  fi sh 
(Cossins et al.  1978 ; Pehowich et al.  1988  ) , in bacteria (Sinensky  1974  ) , and in blue 
green algae (reviewed in Mikami and Murata  2003 ; Los et al. 2010). This results in 
considerable reduction in growth rate and increase in electrolyte leakage (Nayyar 
et al.  2005a,   b,   c,   d,   2007  )  and leaf chlorosis (Murata  1989  ) . Wada et al .   (  1990  )  have 
studied the role played by membrane rigidi fi cation in cold stress by cloning the 
desaturase gene  desA ftoma from chilling tolerant cyanobacterium  Synechocystis  
PCC6803, and then transferring it into the chilling sensitive cyanobaeterium 
 Anacyslisnidulans . The activity of this gene caused membrane lipid desaturation in 
the sensitive species subsequently causing an increase in low temperature tolerance. 
Therefore, it may be anticipated that saturation of membrane lipids is expected to 
rigidify the membranes. It has also been postulated in this context that the variations 
in the membrane phospholipids leads to the generation of a signal phosphatidic acid 
(PtdOH) within the  fi rst one minute of cold exposure as was observed by (Ruelland 
et al.  2002  )  in  Arabidopsis thaliana  culture. This phosphatidic acid (PtdOH) forma-
tion is one of the earliest response of plants to cold stress and it acts as a signaling 
molecule in response to cold stress mediating the NO signaling cascade (Fig.  2.3 ) 
(Testerink and Munnik  2005  ) . This leads to the conclusion that membrane 
rigidi fi cation activates the downstream low temperature induced signaling pathways 
(Suzuki et al.  2000a,   b  ) .  

    2.2   Con fi gurational Changes in Proteins 

 The changes in the membrane  fl uidity also cause con fi rmatory changes in the 
 membrane proteins, which starts the signaling cascade. The temperature downshift 
causes unfolding of proteins (Pastore et al.  2007  ) . Xue  (  2003  )  has observed that 
DNA-binding activity of  CBF2  ( CBF  proteins are transcription factors) in barley 
( Hordeum vulgare ) is also temperature dependent and CBF/CRT regulon is a major 
genetic regulon in cold response by plants (Nakashima et al.  2009 ;    Ruelland et al. 
 2002  ) . Bae et al .   (  2003  )  found 54 nuclear proteins in  Arabidopsis thaliana  and Cui 
et al .   (  2005  )  spotted 60 proteins, which are up- or down-regulated by cold  temperature 
exposure in rice.  

    2.3   Changes in Cytoskeleton 

 The low temperature has also been known to affect the multimeric polypeptides. It 
was reported a long time ago that a drop in temperature causes depolymerization of 
microtubules and actin micro fi laments (Ilker et al.  1979  ) . Pokorna et al.  (  2004  )  
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34 P. Thakur and H. Nayyar

  Fig. 2.3    The schematic representation showing interplay of different signaling pathways in 
response to cold stress in plants. Cod shock in plants starts signaling cascades in plants which also 
cross talk among themselves. The  fi gure above shows the major pathways like Ca 2+  signaling 
which is started as the membrane phase transition occurs. Polyamines are important osmopro-
tectants which act as signaling compounds and stimulate the ABA synthesis in response to cold 
exposure. Increased ABA biosynthesis increases the Ca 2+  in fl ux and biosynthesis of nitric oxide 
(NO) in turn. NO starts a signaling cascade involving the production of phosphatidic acid (PtdOH) 
which interacts with Ca 2+  signaling pathway at some unknown point (?). H 

2
 O 

2
  also interplays with 

NO in the web of signaling induced by cold stress exposure. Major converging point of different 
signaling pathways is CBF/DREB1 which is suppressed by MYBS3 induced in sugar signaling. 
The gene expression is ultimate and thus cold acclimation is achieved       
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352 Facing the Cold Stress by Plants in the Changing Environment…

observed that microtubules disassemble after an exposure of 0 °C for only 20 min. 
In  Medicago sativa  cells calcium in fl ux and  cas30  expression at 4 °C were also 
prevented by jasplakinolide (an actin stabilizer) but induced at 25 °C by cytocalacin 
D a micro fi lament destabilizer (Orvar  2000  ) . Therefore, this implies that the 
cytoskeleton assembly is necessary for defending the cold response (Sangwan et al. 
 2001 ; Al-Fageeh and Smales  2006  )   

    2.4   Sugar Sensing in Cold Signaling 

 Sugars play a central regulatory role in many vital processes of photosynthetic 
plants besides serving the energetic function and are considered as important sig-
nals which regulate plant metabolism and development. Plants have the capacity to 
sense the presence as well as levels of sugars through various pathways that directly 
or indirectly recognize trehalose, fructose, glucose, or sucrose (Rolland et al.  2006  ) . 
The basic mechanism behind the sugar sensing phenomena is still not clearly under-
stood. The research in this area has led to the recognition of a hexokinase from 
 Arabidopsis thaliana  (AtHXK1) which is supposed to be a core component in plant 
sugar sensing and signaling pathways and plays vital functions as the glucose sensor 
that integrates the nutrient and hormone signals to govern the gene expression and 
plant growth in response to environmental aberrations such as cold (Moore et al. 
 2003 ; Cho et al.  2006  ) . Cho et al.  (  2006  )  have elucidated that AtHXK1 functions to 
mediate the sugar repression like the photosynthetic  CAB  genes. Independent of the 
signaling function of HXK1, the metabolism of glucose through it induces the 
expression of defense-related genes (Xiao et al.  2000  ) . We have recently reviewed 
the sugar sensing with respect to stressful conditions in grain crops (Thakur et al. 
 2010  ) .  

    2.5   Reactive Species’ (ROS and RNS) Role in Sensing 

 Reactive oxygen species (ROS) are toxic oxygen free radicals, which are produced 
in the plants out of phytoreactions and cellular oxidation byproducts under normal 
conditions (Finkel and Holbrook  2000  ) . One of the earliest responses of plant cells 
under various abiotic and biotic stresses is the generation of the oxidative burst, dur-
ing which large quantities of ROS like superoxide, hydrogen peroxide, hydroxyl 
radicals, peroxy radicals, alkoxy radicals, singlet oxygen, etc. are generated 
(Bhattacharjee  2005  ) . They are having the potential to cause cellular damage when 
they accumulate to certain toxic levels. However, these ROS are also having an 
important role as their accumulation activated defense-signaling pathways thus 
mitigating cellular damage. It has been estimated that both resistance responses to 
stresses and normal physiological metabolism can lead to ROS production (Van 
Breusegem et al .   2001  ) . These bene fi cial reactive species include nitric oxide and 
hydrogen peroxide and both of these are involved in stress response in plants.  
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    2.6   Low Temperature Induced Signal Transduction 

 According to Kultz (2005) two types of stress responses exist, speci fi c and general; 
the speci fi c ones are against some unique stressful condition like lowered oxygen 
tension characteristic of hypoxic stress in  fl ooded roots (Magneschi and Perata 
 2009  )  and general responses include signals and signaling components which are 
shared by multiple pathways (Bowler and Fluhr  2000 ; Kultz, 2005). Duie to this 
reason, the acclimation to one type of stress in plants may also confer tolerance to 
other types of stresses also. In plants, the homeostasis is constantly under threat by 
environmental variables. Hence, for the adaptation and survival, the plants have 
evolved sensitive and complex mechanisms, which modify their growth and 
 metabolic patterns since to achieve the target of acclimation it must be immediate to 
reestablish homeostasis, repair damaged cellular components, and reprogram the 
altered metabolic system (Wang et al.  2003  ) . 

 The earlier signaling events start with slight perturbation in optimal  environment. 
In order for a plant to respond to low temperature stress conditions, the plant must 
have the ability to sense the slightest temperature change in the environment so that 
it may prepare for the larger change in temperature conditions that may follow and 
which may cause irreversible damage. There are two components of this LTST (1) 
a mechanism of sensing the low temperature i.e. sensing mechanism and (2) a series 
of events that transmit the information from sensor to the nucleus, where speci fi c 
genes need to be activated (Zeller et al.  2009  )  (Fig.  2.2 ). The key to understanding 
plant cold response lies in the identi fi cation of new components involved in those 
processes and the elucidation of the signaling pathways.    

    3   Signal Transduction Mechanism 

 As stated earlier, the membranes are primary receptors for the low temperature 
 signal and the proteins embedded in the plasma membrane transmit these signals to 
cellular machinery through signaling cascade. This ultimately results in gene expres-
sion (Murata and Loss, 1997; Loss and Murata, 2000) so this implies that physical 
state of plasma membrane lipids also regulates the activities of membrane proteins 
(Sukharev et al.  1999  ) , receptor-associated protein kinases (Wood  1999 ; Hohmann, 
2003) and sensor proteins (Tokishita and Mizuno  1994 ; Sugiura et al.  1999  ) . Monroy 
et al .   (  1998  )  have elucidated the LTST in six steps, (1) sensing of low temperature 
(2) transduction of signal into biochemical processes via secondary messengers 
such as Ca 2+ , (3) activation/deactivation of kinases and phosphatases (4) transfer of 
signal to the nucleus (5) activation of speci fi c genes in response to signal {more 
accurately cold acclimation speci fi c genes  cas  genes and (6) development of cold/
freezing tolerance. Mostly these events are studied in isolation for simplicity but a 
complex set of biochemical and molecular reactions is activated in response to the 
input signal, which in turn activates many signaling pathways and these pathways 
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372 Facing the Cold Stress by Plants in the Changing Environment…

cross talk with each other i.e. these are interrelated to each other at various compo-
nents and stages (Jenkins  1998 ; Trewavas and Malhó  1998  ) . 

 Two methods are generally adopted for studying LTST. In the  fi rst method, the 
early signaling events, which take place upon exposure to cold, are studied and the 
cold inducible genes are investigated as end-point markers to understand the overall 
progress. In the second method, the mutants involved in the low temperature induced 
signaling pathway are identi fi ed and the role of each component and its sequence in 
the cascade is established. 

    3.1   Role of Ca 2+  in Low Temperature Induced Signal 
Transduction 

 Ca 2+  has been reported to regulate several important cellular functions. It also acts 
as secondary messenger in the signal transduction system. Whenever Ca 2+  homeo-
stasis is disturbed inside the cytoplasm, it leads to interference with cellular response, 
even when Ca 2+  does not play a direct role in the mediation of cellular processes. 
The inward  fl ow of Ca 2+  into the cytosol has been reported to play a crucial role in 
signal transduction, where it acts as secondary messenger. In plant cells, Ca 2+  is 
largely stored in the apoplast, where its concentration is at least 10 −5  to 10 −4  M 
(Cleland et al.  1990 ; Evans, et al.  1991  ) . Regulation of many protein kinase activi-
ties occurs through binding of Ca 2+  to key regulatory proteins like Ca 2+ -dependent 

  Fig. 2.2    A generalized and simpli fi ed scheme of stress-induced signal transduction consequently 
providing stress tolerance or stress acclimation       
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protein kinases (CDPKs) (Roberts and Harmon  1992 ; Cheng et al.  2002  ) , Ca 2+ /
CaM-dependent protein kinases (Shimazaki et al.  1992 ; Pandey et al.  2002  ) , Ca 2+ /
phospholipid-dependent kinases (Nickel et al.  1991  ) , and a homologue of Ca 2+ -
dependent protein phosphatase have also been identi fi ed in plants (Kudla et al. 
 1999  ) . It has been reported that the cytosolic Ca 2+  increases in response to cold 
shock (Knight et al.  1996  ) . This increase in cytosolic Ca 2+  ampli fi es the stimulus 
signal perceived by the plant. Ca 2+ has been reported to be involved in a variety of 
stimulus–response pathways., the elicitation of a speci fi c response from a general 
signal can be explained by means of variations in the amplitude, duration, frequency, 
and location of the Ca 2+  signal, as well as in the interactions of this signal with other 
components of the pathway (McAinsh et al. 1997; McAinsh and Hetherington, 
1998). It has also been observed that calcium is required for the total expression of 
some cold-induced genes like  COR6  and  KIN1  genes of  Arabidopsis thaliana  
(Monroy et al.  1993 ; Monroy and Dhindsa  1995 ; Knight et al.  1996  ) . Monroy and 
Dhindsa  (  1995  )  elaborated that a gene  Cas15  was not fully expresses due to the 
chelation of Ca 2+  in alfalfa and thus the plant could not acclimate to the cold condi-
tions. Later on when the plant was treated with A23187 (A Ca 2+  ionophore which 
increases the in fl ux of Ca 2+ ), the expression of  Cas15  was achieved even at very 
high stressful temperature. This shows that Ca 2+  is very important in temperature 
induced gene expression. Some workers have suggested that exposure to one kind 
of or a speci fi c amount of stress leads to a speci fi c Ca 2+  in fl ux and signal kinetics, 
but subsequent exposure to some different amount of stress causes a different Ca 2+  
signal kinetics, than observed previously. This establishes the hypothesis of “stress 
memory” which modulates plant stress responses. The strength of stimulus response 
is determined by the extent of Ca 2+  in fl ux which may be responsible for the speci fi city 
of the response. Another factor which confers speci fi city to the response is the des-
tination of Ca 2+  in fl ux. Ca 2+  sensors are also important as they couple the extracel-
lular signaling to intercellular responses and comprise calmodulin- and CaM-related 
proteins (Snedden and Fromm  2001  ) ,calcineurin B-like proteins (Kudla et al.  1999  )  
and CDPKs (Harmon et al.  2000  ) . It has been noted by many authors that cytosolic 
calcium is involved in signaling pathways induced by various kinds of stresses like 
heat, cold, drought, and salinity etc .  (Trewavas and Malhó  1998  ) . Hence, it may be 
concluded that the cytosolic calcium acts as a convergence point and plays a central 
role in the integration of different signal transduction pathways.  

    3.2   Role of Nitric Oxide 

 Nitric oxide (NO) has emerged as a key signaling molecule in animals as well as 
plants during the last decade and its role has been implicated in number of  physiological 
and developmental processes as well as response to abiotic stresses including heat and 
cold stress (Qiao and Fan  2008 ;    Corpas et al.  2001  ) . In recent years, NO has been 
shown to be involved in seed germination and reduction of seed dormancy (Bethke 
et al.  2006a,   b,   2007 ; Libourel et al .   2006  ) , photo-morphogenesis, leaf expansion, 
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root growth, regulation of plant maturation and senescence (Mishina et al.  2007  ) , 
suppression of  fl oral transition (He et al .   2004  ) , phytoalexin production (Noritake 
et al .  1996; Beligni and Lamattina  2000  )  and as an intermediate downstream of 
ABA signaling (Bright et al.  2006 ; Garcia-Mata and Lamattina  2007  ) . NO is a free 
radical reactive gas with many physiological functions (   Besson-Bard et al.  2008a,   b ; 
Neill et al.  2008a,   b  ) . It has been recognized as an important biological mediator in 
animals because of its role in certain important functions like neurotransmission, 
in fl ammatory responses, and relaxation of smooth muscles (Schmidt and Walter 
 1994  ) . But its role in plant metabolic system was very much unknown till recently. 
Kopyra and Gwó  (  2004  )  have reported that NO alleviates the deleterious effects of 
ROS and establishes a stress resistance response. Corpas et al.  (  2008  )  have observed 
the involvement of NO as reactive nitrogen species in case of pea. They found that pea 
plants in response to stressful conditions activated the metabolism of reactive nitrogen 
species and that low and high temperature, continuous and high light intensity induced 
the overproduction of these reactive nitrogen species thereby consequently causing 
nitrosative stress which is although a cytotoxic effect of NO. The recent investigations 
on its relative role in plant regulatory and signaling mechanisms have spanned the part 
of the  fi ssure, and the picture that came out of these investigations shows that it has got 
many important functions to play in plant system like ubiquitous signal involved in 
diverse physiological processes that include germination, root growth, stomatal clos-
ing, and adaptive response to biotic and abiotic stresses (reviewed in Stuehr et al. 
 2004 ; Besson-Bard et al.  2008a,   b  ) . But its generation mechanism in plant system is 
still controversial (Corpas et al.  2004,   2006 ; Crawford  2006 ; Zemojtel et al.  2006 ; 
   Neill et al.  2008a,   b  ) .    Zhao et al.  (  2009a,   b  )  has also demonstrated that nitric oxide 
production in plants is involved in acquiring cold acclimation or cold tolerance. 
Guillas et al.  (  2011  )  have evidenced that NO is produced immediately as a plant 
response to cold stress and it participates in the regulation of cold-responsive gene 
expression. They also showed the presence of a novel downstream elements which 
were identi fi ed as phosphosphingolipid metabolic species i.e. phytosphingosine-
phosphate (PHS-P) and a ceramide phosphate (Cer-P). Cantrel et al .   (  2011  )  have also 
stated that PHS-P and a Cer-P are transiently synthesized upon chilling. They also 
stressed that these two phosphosphingolipid species are negatively regulated by NO. 
NO mediates signaling in response to various abiotic stresses by involving ABA, 
calcium, and hydrogen peroxide which are also suggested to function in cold response 
too. The involvement of NO in imparting cold tolerance has been indicated by its 
exogenous application in certain cold-sensitive plant species such as maize and 
tomato (Neill et al .  2003). Its mechanism in providing protection against cold has 
been attributed to its antioxidative feature and suppression of peroxidative metabo-
lism caused by stress (Neill et al .   2002  ) . The role of NO in cold signaling has 
recently received attention. The cellular metabolism can be affected by NO through 
S-nitrosylation of protein thiols to form S-nitrosothiols and moreover it can lead to 
activation or inhibition of protein functions. In one of the studies, a brief cold stress 
(1–6 h) to  Brassica juncea  seedlings generated many S-nitrosothiols resulting in 
proteins modi fi cations involving those in antioxidant metabolism (Abat and Deswal 
 2009  ) . NO levels are reported to be restricted by non-symbiotic haemoglobins 
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(nHb) that can scavenge NO and keeps its levels below toxic range to act as signal-
ing molecule in cold response (Dordas et al.  2003a,   b ; Gupta et al.  2011a,   b  ) . 
Additionally, NO may mediate lipid-based signaling in cold response. The sphingolipids 
produced during cold stress are transiently phosphorylated while NO may prevent this 
step to facilitate lipid-based cold signaling. It has been reported that NO transduces 
signals through cGMP as its downstream mediator and also it may interact with other 
signaling molecules such as H 

2
 O 

2
 , Ca 2+ , and salicylic acid directly or indirectly (Neil 

et al .  2003; Lamotte et al .   2004 ; Wendehenne et al .   2006  ) . Recently, it has been found 
that NO downstream cascade involves the cytoskeletal proteins as these proteins are 
involved in many processes regulated by NO in plants (Yemets et al.  2011  ) . Besides the 
roles of NO as signaling molecule it has also been reported to be a regulator in gene 
expression (Kopyra and Gwozdz  2004  ) .  

    3.3   Role of Polyamines 

 As we know that the plants which are having inherent characteristic of low  temperature 
tolerance, in response to low temperature exposure, start regulatory and molecular 
mechanisms that are triggered to optimize the metabolic parameters which make sure 
the survival of the plant under suboptimal temperatures (Stitt and Hurry  2002  ) . 
Polyamines are the low molecular weight organic polycations having two or more amino 
( − NH 

2
 ) groups. The role of polyamines has been implicated in growth and  developmental 

processes in higher plants especially in response to stressful conditions like senescence 
and biotic or abiotic stresses. As such they have been reported to encourage DNA 
 replication, transcription, and translation. It has been observed in different plants species 
hat during exposure to stressful conditions polyamines’ biosynthesis is enhanced. 
Polyamines have also been known to be involved in the plant defense system against 
environmental changes (reviewed in Alcázar et al.  2006 ; Groppa and Benavides  2008 ; 
Liu and Moriguchi  2007 ; Hussain et al.  2011  ) . Because polyamines act as the  scavengers 
of ROIs so these confer the protection from the oxidative stress. In low temperature 
stress the role of polyamines has been studied in detail by many workers in different 
plant species (Nayyar and Chander  2004  ) . It has been shown that putrescine 
 accumulates in plants under cold stress regimes (Kaplan et al.  2004 ; Cook et al. 
 2004 ; Cuevas et al.  2008  )  and it is very important for their survival as the  Arabidopsis  
mutants with defective putrescine synthesis were having reduced cold tolerance 
than wild ones. They also demonstrated that alterations in the levels of ABA caused 
depletion in the putrescine levels which was drastic to plant survival in cold stress. 

 Plant polyamines have also been known to function as secondary messengers 
and modulate various anatomical, biochemical, physiological, and molecular 
 processes in intracellular as well as extracellular areas under stress (Kuznetsov et al. 
 2006 ; Alcázar et al.  2006,   2010 ; Cavusoglu et al.  2008  ) . The polyamine-related 
metabolic enzymes are also associated with cell wall including apoplast, where 
ligni fi cation, suberization, and wall stiffening occur (Kujnetsov et al. 2006). Aronova 
et al.  (  2005  )  have elucidated that polyamines in apoplast are also related to the 
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 generation of H 
2
 O 

2
  in the apoplast, where it is required for the formation of suberin, 

lignin, and oxyproline proteins. The role of polyamines has also been reported to be 
very important and it has been demonstrated that it functions during environmental 
insult as a part of antioxidative system and protects the membranes from oxidative 
damage (Kim et al.  2002 ; Verma and Mishra  2005 ; Kuznetsov et al.  2006 ; 
Shevyakova et al.  2006  ) . In recent years, it has also been proved that polyamines are 
also having an important role in the regulation of structure and function of photo-
synthetic apparatus under low temperature stress conditions (   Urao et al.  1999  ) . 

 As already stated that polyamine biosynthesis is increased during exposure to 
stressful conditions including cold stress so it may be implicated that the initiation 
of polyamine biosynthesis requires a stress signal in the form of stimulus (Imai et al. 
 2004  ) . The higher endogenous levels of polyamines may be positively correlated 
with the increased amount of antioxidants so it can be suggested that polyamines 
accumulation is able to optimize the metabolic rate and subsequently ensuring the 
growth and survival of the plant under stress i.e. it increases the stress tolerance of 
plants (Alcázar et al.  2006  ) . But the exact mechanisms through which the polyamines 
act as a defense line against stress are still ill de fi ned (Nayyar and Chander  2004 ; 
Aronova et al.  2005  ) . Nayyar and Chander  (  2004  )  have found bene fi cial the effects 
of exogenous application of polyamines on chickpea ( Cicer arietinum  L.) in low 
temperature stress conditions. Kovacs et al.  (  2010  )  observed in case of wheat the 
effects of cold stress, osmotic stress, and abscisic acid (ABA) on polyamine accumu-
lation and it was found that the levels of putrescine and spermidine levels were higher 
during the exposure to above stated stress conditions whereas the ABA treatment 
increased the levels of cadverine. Cuevas et al.  (  2008  )  have established that in 
response to low temperature stress putrescine is synthesized in plants and it  modulates 
ABA biosynthesis at transcriptional levels and demonstrated that polyamines  function 
as regulators of phytohormone biosynthesis. Despite all these  fi ndings which put 
forth a protective role for polyamines, it has still not been established how polyamines 
modulate biosynthesis of phytohormones like ABA and more studies are needed in 
this context.  

    3.4   Role of Trehalose 

 Trehalose is a nonreducing disaccharide in which the two glucose units are linked 
in an  a ,  a -1, 1-glycosidic linkage. Although there are three possible anomers of 
trehalose, that is,  a , b -1,1-,  b , b -1,1-, and  a , a 1,1-, only the  a , a -trehalose has been 
isolated from and biosynthesized in living organisms. It is synthesized in two steps 
(1) trehalose-6-phosphate synthase synthesizes trehalose-6-phosphate (T6P) and 
(2) T6P is converted to trehalose by trehalose6-phosphate phosphatase. It has also 
been reported to serve as a signaling molecule to direct or control certain metabolic 
pathways or even to affect growth in plants and yeast. Besides this, trehalose has 
also been reported to serve as protective guard for proteins and cellular membranes 
from inactivation and denaturation by various kinds of environmental constraints 



42 P. Thakur and H. Nayyar

including cold stress as it accumulates in traces in plants in response to stress 
(Ramon and Rolland  2007 ; Paul et al.  2008 ; Paul  2008  ) . Still the accurate role of 
trehalose in plants is still unclear and needs further research (Fernandez et al.  2010  ) . 
Its role has also been implicated in the mediation of sugar metabolism in plants as 
it controls the rate of starch synthesis by means of redox modi fi cation of  ADP-glucose 
pyrophosphorylase (Kolbe et al.  2005 ; Lunn et al.  2006  ) . Trehalose may also 
 stabilize cell membranes whose  fl uidity decreases during temperature downshift. 
And thus exogenous application of trehalose has also been observed to confer stress 
tolerance against cold temperatures (Su et al.  2010  ) . As we have already reviewed 
that trehalose accumulates rapidly in response to cold shock in plants. This is 
 followed by the transient induction of  TPP  activity (Pramanik and Imai  2005  ) .  TPP  
overexpression boosts the trehalose accumulation and confers cold tolerance (Jang 
et al.  2003 ; Ge et al.  2008  ) .  

    3.5   Mitogen-Activated Protein Kinases 

 These are the proteins which catalyze reverse phosphorylations, which is very 
 necessary for relaying signals. The MAPKKKs (MAPK kinase kinase) function by 
means of cascades which involves the sequential phosphorylation of a kinase by its 
upstream kinase (Xiong and Shitani  2006  ) . MAPK pathways are activated by 
 various abiotic stresses (Ligterink and Hirt  2001  )  and they also introduce the char-
acteristic of speci fi city into the system. In  Arabidopsis thaliana,  three kinds of 
MAPKKKs have been found (1) CTR1 (2) ANP1-3 and (3) AtMEKK. Out of these, 
three AtMEKK are expressed in response to different abiotic stresses including cold 
(Knight and Knight  2001  ) .  

    3.6   Transcription Factors 

 The process of acquiring tolerance to chilling (freezing or nonfreezing)  temperatures 
can be achieved by exposure of plants to positive low temperatures. This is called 
cold acclimation. However, it has been experimentally proved that the cold 
 acclimation can also be achieved by exposure to drought or application of ABA 
(   Thomashow  1999  ) . This is because many genes that are induced by cold 
t emperatures are also expressed by application of ABA or exposure to drought 
stress. Moreover, these genes encode for proteins, which provide tolerance against 
both drought induced dehydration as well as cold stress. One of these common cold 
and drought-regulated genes is  RD29A  in  Arabidopsis thaliana.  This gene has been 
found to contain DRE or CRT (drought-responsive or C-repeat element) in their 
promoters (Kasuga et al.  2004  ) . It has been noticed in  Arabidopsis thaliana  that two 
groups of transcription factors are present (1)  DREB1  (also called CBF) and (2) 
 DREB2.  These transcription factors induce the expression of speci fi c genes for cold 
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stress and other drought or salinity stress respectively. This also makes it clear that 
DRE transcription factor is a point at which different stress (cold drought or salt) 
induced pathways converge (Fig.  2.3 ). So it can be said that DRE has the capability 
to integrate the information from two or more stress stimuli and it plays an impor-
tant role in cross talk of stress signaling pathways.  

 Transcript pro fi ling experiments revealed that multiple regulatory pathways are 
activated during cold acclimation, and that one such important pathway involves the 
c-repeat binding factor (CBF) regulon (Thomashow  1999,   2001  ) . The c-repeat/
dehydration-responsive-element binding factor genes ( CBF1-3 ) are transcriptional 
activators involved in governing the plant’s responses to low temperatures (Schwager 
et al. 2011). These include  CBF1 ,  CBF2,  and  CBF 3 (Gilmour et al.  2004  ) . Several 
studies have reported that ectopic overexpression of some CBFs resulted in both 
activation of target genes and enhanced freezing, salt, or dehydration tolerance of 
transgenic plants (Jaglo-Ottosen et al.  1998 ; Liu et al. 1998; Kasuga et al.  1999 ; 
Haake et al.  2002  ) . CBF pathway is a central component of cold response, but CBF-
independent pathways might also be necessary for the cold stress response (Zhu 
et al.  2004  ) . Hsieh et al.  (  2002  )  suggested that overexpression of  CBF1  increased 
chilling tolerance in tomato by enhancing  CATALASE1  gene expression and enzyme 
activity, and oxidative stress tolerance (Hsieh et al .   2002  ) . Direct evidence exists for 
the activities of some cold-regulated transcription factors (TFs) not participating in 
the CBF cold-response pathway (Fowler and Thomashow  2002  ) , which suggests 
that TFs play a crucial role in controlling downstream gene expression as well as the 
regulation of cross talk between different signaling pathways (reviewed in Knight 
and Knight  2001  ) . Over-expression of AtCBF1/3 enhanced tolerance against cold, 
drought, and salt stress in  Brassica  species (Jaglo et al .  2001), wheat (Pellegrineschi 
et al. 2004) and rice (Oh et al. 2005). 

 Another transcription factor termed as inducer of CBF expression 1 (ICE1) acts 
as a key regulator of cold-induced gene expression and is present upstream of CBF. 
ICE 1 is an  MYC- type basic helix-loop-helix (bHLH) transcription factor that binds 
to MYC-cis element in the CBF 3 promoter and may be able to activate the expres-
sion of CBF3 upon cold stress. The constitutive expression of  ICE1  enhanced the 
expression of  CBFs  and  COR  genes leading to increased cold tolerance (Chinnusamy 
et al.  2003  ) . On the other hand,  ice1  mutant showed impaired chilling tolerance as 
well as cold acclimation. Moreover in such mutants, a large number of cold-induced 
genes were either not induced or their induction was 50 % than that of wild-type 
plants. These  fi ndings indicated that ICE1 acts as a key regulator of several cold-
responsive CBF-dependent and independent regulons.  

    3.7   Role of Abscisic Acid 

 ABA is a phytohormone critical for plant growth and development and plays an 
important role in integrating various stress signals and controlling downstream 
stress responses. ABA has been reported to act as an endogenous messenger and 
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regulates the water status of the plant (Swamy and Smith  1999  ) . As various stresses 
have been known to induce ABA synthesis, it is now considered as a plant stress 
hormone (Swamy and Smith  1999 ; Mahajan and Tuteja  2005  ) . Because the phyto-
hormones mainly function as the regulators of adaptive response, the main function 
of ABA is to maintain and to optimize the plant water status (Swamy et al. 1999) by 
means of acting as endogenous messenger. In an experiment involving ABA 
de fi cient mutants of  Arabidopsis thaliana,  it was found that these mutants wilt 
and die readily under stress as compared to their wild counterparts (Shinozaki 
and Yamaguchi-Shinozaki  2000  ) . Very recently (Nguyen et al.  2009  )  established 
by their experiments on maize ( Zea mays ) low temperature response that the 
genes induced by low temperature stress ( ZmCOI6.1, ZmACA1, ZmDREB2A, 
and ZmERF3 ) are also induced by ABA application so it may be implicated that 
ABA synthesis regulates the induction and expression of speci fi c cold-responsive 
genes in plants. Low temperatures have been reported to exert their effect on gene 
expression in ABA-independent pathways (Thomashow  1999 ; Shinozaki and 
 Yamaguchi-Shinozaki  2000  ) . Genetic analytical studies have shown that there is no 
clear line of demarcation between ABA-dependent and ABA-independent pathways 
and the components involved may often cross talk or even converge in the signaling 
pathway. Ca 2+  has been found to mediate this cross talk (Fig.  2.3 ). 

 The expression of CBF1, CBF2, and CBF3 genes is induced by ABA but to a 
lower extent than that caused by cold acclimation (Knight et al.  2004  ) . ABA has 
been also reported to induce the expression of  ICE1  (Chinnusamy et al .   2003  ) . In 
this way, ICE 1 can also govern the ABA-mediated expression of  CBF  genes. Since 
cold-induced expression of  CBFs  is transient, ABA may activate ICE1-CBF-
dependent and independent pathways that may be required to maintain the expres-
sion of  COR  genes during prolonged cold conditions. It has been reported that both 
ABA-independent and dependent pathways regulate cold-responsive genes (Xiong 
et al .   1999  ) . ABA-dependent gene expression is regulated by transcription factors 
that belong to bZIP (ABRE-binding factors or AREB’s), MYC and MYB families. 
 ABRE -binding factor 1 ( ABF1 ) was cloned from  Arabidopsis  (Choi et al .   2000  )  while 
its target genes are not known. However, ABAE elements can regulate the  COR  gene 
expression by involving a C2H2-type zinc  fi nger protein which activates a bZIP 
transcription factor.  COR  gene expression can also be mediated by ABA by involv-
ing a cold inducible bZIP transcription factor in case of soybean (Kim et al .   2001  ) . 
Cold stress has also been known to affect the auxin transport system in plants and 
inhibit basipetal auxin transport by blocking the intracellular traf fi cking of auxin 
ef fl ux carrier PIN2 (Shibasaki et al.  2009  ) .  

    3.8   Role of H 
2
 O 

2
  

 The univalent reduction of O  
2
  ·−   produces H 

2
 O 

2
 . Hydrogen peroxide is considered a 

versatile actor of plant metabolic system. Because it plays dual roles as per its 
 concentration, at low concentration it acts as mediator of signaling pathways leading 
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to stress acclimation and at higher concentration it orchestrates the cellular damage 
and death. Low temperature stress has also been shown to induce H 

2
 O 

2
   accumulation 

in cells (O’kane et al.  1996  ) . H 
2
 O 

2
  was disregarded as a cellular toxic metabolite 

for many years is a ROS, because its accumulation causes  oxidative stress and it 
can lead to damage as well as death of plant. Plants were able to achieve a high 
degree of control over H 

2
 O 

2
  accumulation in due course of evolution (Dröge  2002  ) . 

But it has come to be known now that H 
2
 O 

2
  is a key s ignaling molecule in plants 

under stressful conditions and modulates the  expression of various genes (Neill 
et al.  2002  ) . During the last decade H 

2
 O 

2
  has been given due attention as a kind of 

reaction oxygen species which acts as secondary messenger in stress signaling 
pathways as it is having a long life and high permeability across membranes (Neill 
et al.  2002 ; Huang et al.  2002 ; Yang and Poovaiah  2002  ) . Dat et al.  (  2000  )  demon-
strated that H 

2
 O 

2
  plays an important role in plants during biotic and abiotic stress 

conditions whereas Laloi et al .   (  2004  )  have observed that hydrogen peroxide is 
produced in plants in response to various biotic as well as abiotic stresses. Many 
physiological as well as biochemical  processes in plants including systemic 
acquired resistance (SAR) and  hypersensitive resistance (HR) (Melillo et al .   2006  )  
senescence (Hung et al .   2006  ) , programmed cell death (Houot et al .   2001  ) ,  stomatal 
movements (Pei et al .   2000 ; Zhang et al .   2001 ; Bright et al.  2006  ) , gravitropism 
property of roots (Joo et al .   2001  ) , development of lateral secondary and tertiary 
roots (Su et al .   2006  ) , cell wall formation (Potikha et al .   1999  ) , and pollen–pistil 
interactions (Mcinnis et al.  2006a,   b  ) . Now it has been experimentally proved that 
proteins functioning in metabolism, energy movement, protein translocation and 
transport, cellular organization and defense and transcription are encoded by 
transcripts induced by H 

2
 O 

2
  (Desikan et al .   2001  ) . Studies have provided  evidence 

that H 
2
 O 

2
  itself is a key signal molecule, which mediates a series of responses 

(Desikan et al .   2003  )  and activates many other important signal molecules such 
as Ca 2+ , salicylic acid, ABA, jasmonic acid, ethylene and nitric oxide of plants 
(Liu et al .   2004 ; Desikan et al .   2004 ; Wendehenne et al .   2004  ) . H 

2
 O 

2
  has also 

been reported to work in coordination with NO, ABA, jasmonic acid, and ethyl-
ene in response to cold stress. Especially, in cold response, ROS such as H 

2
 O 

2
  

may alter calcium expression (signatures) and activate mitogen protein kinases 
(MAPK) and redox-responsive transcription factors. The expression of  COR  
(cold- responsive) genes is reported to be regulated by ROS (Lee et al.  2002  ) . 
Under cold stress, ROS activate the AtMEKK1/ANP (MAPKKK)-
AtMKK2(MAPKK)-AtMPK4/6 (MAPK) MAPK cascade that is imperative for 
cold acclimation in plants (Teige et al.  2004  )   

    3.9   Role of Cytoskeleton 

 The eukaryotic cytoskeleton consists of tubulin dimers which form microtu-
bules (MTs), actin monomers which form actin micro fi laments (AFs) and 
vimentin and related proteins that constitute intermediate  fi laments. MTs and 
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AFs are both implicated in signaling, and are discussed in the following 
sections.  

    3.10   Microtubules 

 Microtubules are thought to transmit signals from the receptor to the nucleus, 
since they span the cell from the nucleus to the plasma membrane (Gundersen and 
Cook  1999  ) . The minus ends of microtubules associate with the microtubule orga-
nizing center (MTOC, or centrosome in most animal cells) near the nucleus, and 
the plus ends terminate near the plasma membrane. This gives microtubules a 
de fi ned polarity and enables directional transport via the motor molecules kinesin 
and dynein. As the microtubules provide a surface area ten times larger than the 
nuclear envelope, there is ample space for protein–protein interactions on their 
surface. So it should not be surprising that microtubules have been associated 
with various signaling pathways (Volkmann and Baluska  1999  ) . Microtubules act 
as a scaffold, bringing components of the signaling pathways together. Another 
example of microtubules’ involvement in signaling is the interaction between 
microtubules and ERK1/2, both in vitro (Mandelkow et al.  1992  )  and in vivo 
(Reszka et al.  1995  ;  Morishima-Kawashima and Kosik  1996 ; Reszka et al.  1997  ) , 
where microtubule association could retain some activated MAPKs in the cyto-
plasm. Another MAPK, ERK5, possesses C terminal sequences that suggest that 
it may a1so be targeted to the cytoskeleton (Zhou et al.  1995  ) . In the G-protein 
signaling pathway, tubulins have been identi fi ed as secondary substrates for 
G-protein-coupled receptor kinases (Haga et al.  1998 ; Pitcher et al.  1998  ) . 
However, no single mechanism for the modulation of G-protein signaling has 
been identi fi ed, since breakdown of microtubules and G-protein subunit-microtu-
bule interactions leads to a multiplicity of events. 

 Spatial orientation of microtubules is generated by their interaction with pro-
teins such as those found in MTOCs (Marc  1997 ; Vaughn and Harper  1998  ) . 
However, since centrosomes are not found in higher plants (Vaughn and Harper 
 1998  ) , the origin, identity, and precise locations of MTOCs is not known. 
Microtubules have been shown to play a role in growth orientation in plants 
(Williamson  1991 ; Joshi  1998  ) . Mathur and Chua  (  2000  )  using transgenic plants 
expressing a fusion of green  fl uorescent protein and microtubule-associated pro-
tein 4 have shown that MT stabilization leads to growth reorientation in 
 Arabidopsis  trichomes. The role of MTs in Ca 2+  channel opening was examined 
by Thion et al .   (  1996  ) . When cold-shocked  Nicotiana plumbagnifolia  protoplasts 
were treated with oryzalin and cytochalasin D, destabilizers of MTs and actin 
micro fi laments, respectively, a synergistic increase of Ca 2+  in fl ux was observed 
(Mazars et al.  1997  ).  Thus, both MTs and actin micro fi laments are speculated to 
be involved in Ca 2+  in fl ux in cold signaling.  
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    3.11   Actin Micro fi laments 

 Actin occurs in plant cells in two forms: globular actin (G-actin), which comprises 
actin monomers, and  fi lamentous actin (F-actin), which consists of assemblies of 
G-actin and other proteins. Plant actin gene families are more abundant and diverse 
than those found in other organisms. It has been demonstrated that  Arabidopsis  has 
ten genes which code for actin (McDowell et al.  1996  )  whereas  Vicia faba  has  fi ve 
isoforms of actin gene (Janben et al.  1996  ) . 

 The cell signaling processes are thought to be mediated by the balance between 
F and G-actin, alterations in the relative amounts of actin binding proteins and their 
binding abilities, and formation of actin-associated myosin  fi laments. Recent stud-
ies have shown that dynamic interconversions of F- and G-actin play a major role in 
the regulation of ion channels in the plasma membrane, controlling osmoregulation 
(Schwiebert et al.  1994 ; Tilly et al.  1996  ) , as well as cell polarity (Drubin and Nelson 
 1996  ) , cell growth and proliferation, secretion and cell wall interactions (Grabski 
et al.  1998  ) . 

 Plasma membrane-associated actin is involved in the phosphoinositide signaling 
pathway (Tan and Boss  1992  ) . Actin also plays a role in intracellular movement, 
including the endocellular localization of ER and Golgi elements, which are fully 
under F-actin control (Lichtscheidl et al.  1990  ) .   

    4   Cold Stress Defense/Tolerance Mechanisms in Plants 

 The outcome of the signal perception, transduction and transcriptional up or down 
regulation of genes is the production of some metabolites which have plant protec-
tion, repair, and stabilizing functions. All these result into acquired tolerance against 
one or more abiotic stresses. Cold acclimation also known as cold hardening is one 
such responses that refers to increase in tolerance over time to cold temperatures 
and results from changes in gene expression and physiology (Xin and Browse  2000 ; 
Kalberer et al .   2006  ) . 

    4.1   Cold Stress Proteins 

 Proteomic studies have revealed differential expression of proteins in some plant 
species exposed to cold stress. In pea mitochondria, 33 proteins showed either up-or 
down regulation under different stress conditions, 20 of which appeared to respond 
to low temperature of 4 °C for 36 h (Taylor et al .   2005  ) . In rice anthers, a cold 
 treatment for 4 days at 12 °C induced differential expression of 70 proteins out of 
which 47 were up-regulated, 12 were new, and 11 were down-regulated with a posi-
tive identi fi cation for 18 of them (Imin et al .   2004  ) . In leaves of poplar seedlings 
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subjected to 4 °C for 2 weeks, 26 proteins were identi fi ed that were COR proteins 
of which 21 were overexpressed and 5 were repressed (Renaut et al .   2004  ) . Broadly, 
the types of proteins expressed in response to cold stress are antifreeze proteins 
(AFP’s), dehydrins and late embryogenesis abundant (LEA) proteins, heat shock 
proteins (HSPs), chaperonins, pathogenesis-related (PR) proteins and those related 
to transduction, transcription and signaling pathways. 

 AFP’s lower the freezing temperatures in cold acclimated leaves and after the 
leaves have been frozen and also prevent the growth of ice crystals by binding with 
them (Grif fi th et al.  2005  ) . Thus, these proteins protect the cells from the  mechanical 
injury by preventing the size of the individual ice crystals to increase as well as to 
inhibit the growth of ice crystals into the intercellular spaces. Though these proteins 
are primarily extracellular in location and activity but intracellular dehydrin in case 
of peach was found to have AFP proteins like activity (Wisniewski et al .   1999  ) . 
AFP’s are suggested to be homologous of PR proteins such as B 1, 3 glucanases, 
chitinases or thaumatin like proteins (Grif fi th and Yaish  2004  ) . 

 LEA proteins though originally shown to be accumulated in plant embryos 
 during the later stages of embryogenesis (Dure  1993  )  but now have been found to 
be expressed in response to osmotic stress, cold and ABA (Wise and Tunnacliffe 
 2004  ) . These proteins have subclasses and many roles have been suggested for them 
such as chaperones, DNA-binding and repair, being a structural component of 
cytoskeleton. Dehydrins, a subgroup of LEA proteins are stable to heat, rich in gly-
cine are expressed in response to abiotic stresses causing dehydration have role in 
stabilization of membranes and protection of other proteins from denaturation due 
to water loss induced by the stresses (Allagulova et al.  2003  ) . Dehydrins have been 
reported to be accumulated due to cold stress in case of herbs and woody plants 
(Wisniewski et al .   2004  ) . In poplar, the expression of a single 100 kDa LEA protein 
was documented (Renaut et al .   2004  ) . 

 HSPs is another category of stress proteins which though originally discovered 
for their expression in response to heat stress are now reported to be generated due 
to drought, salt, and cold stresses (Sabehat et al.  1998  ) . HSP’s are also referred to as 
stress-related molecular chaperones. Especially, families of HSP90, HSP70 and 
small HSP’s have been shown to accumulate due to cold stress (Lopez-Matas et al. 
 2004  ) . HSP’s have a role in translation, translocation into organelles, refolding of 
denatured proteins, prevention of aggregation of denatured proteins and protection 
of membranes (Tsvetkova et al.  2002  ) . 

 Pathogenisis-related (PR) proteins, which are expressed due to pathogenic attack, 
are also produced in response to mechanical injury, xenobiotic compounds, and 
environmental stresses. There are 14 groups of PR proteins identi fi ed that represent 
B 1,3 glucanases, chitinases, thumatin-like proteins, and lipid transfer proteins (Liu 
et al.  2003  ) . They are speculated to have a role in signal transduction pathway in 
reaction to abiotic stresses including cold stress (Hoffmann-Sommergruber  2000  ) . 

 Besides these proteins, the expression and activity of several enzymes pertaining 
to various metabolic pathways are either up-regulated or down-regulated depending 
upon the severity and duration of the cold stress (Hurry et al .  1995). Among several 
enzymes, those related to photosynthesis (rubisco subuits, rubisco activase, 
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 polypeptides of the PSII O 
2
  evolving complex), carbohydrate metabolism (sucrose 

phosphate synthase, invertase, sucrose synthase, and enolase), and detoxi fi cation 
enzymes (antioxidants), those of proline metabolism (proline dehydrogenase), and 
lignin metabolism (caffeic acid 3- O -methyltransferase).  

    4.2   Metabolic Modi fi cations 

 Exposure of plants to stress conditions results in the alteration of their metabolic 
activities. This happens by means of two ways (1) adjustment/restoring of the low 
temperature induced alterations in metabolic parameters like the structure and func-
tional catalytic properties of enzymes by regulatory mechanisms as soon as it occurs 
(Schwender et al.  2004 ; Fernie et al.  2004  )  and (2) modi fi cation of the metabolic 
parameters according to the stress conditions (adaptive mechanisms) such as the 
production of some metabolites, osmolytes, and phytohormones have been reported 
to increase during stress conditions (Nayyar  2003a,   b ; Nayyar et al.  2005a,   b,   c,   d, 
  2007 ; Farooq et al.  2008 ; Kaur et al.  2011  ) . These include sugars, amino acids, 
organic acids, polyamines and lipids (Nayyar and Chander  2004 ; Nayyar et al. 
 2005a,   b,   c,   d ; Farooq et al.  2009 ; Kaur et al.  2011  ) , which eventually assist in cel-
lular protection from cold-induced damage by various mechanisms.  

    4.3   Antioxidant Systems 

 Much of the injury to plants caused by chilling stress is associated with oxidative 
damage at cellular level (Bowler et al.  1992  ) . Inherent metabolic homeostasis of 
plants is disturbed due to adverse environmental factors, which results in the pro-
duction of ROS (Suzuki and Mittler  2006  ) . 

 Protective mechanisms against stressful low temperature conditions can be 
divided into two separate categories, those involved in removing reactive oxygen 
intermediates and those involved in reducing production of reactive oxygen interme-
diates. Generally, the defense system against reactive oxygen intermediates in plant 
cells is a net result of suppression mechanisms, scavenging, and repair systems. 
Higher plants have active oxygen scavenging systems consisting of several 
 antioxidant enzymes, such as superoxide dismutase (SOD), ascorbate peroxidase 
(APX), catalase (CAT), glutathione reductase (GR), and some non-enzymatic 
 antioxidants, such as ascorbic acid,  a -tocopherols, phenolic compounds, and reduced 
glutathione (Bowler et al.  1992  ) . In recent years, it has become apparent that plants 
actively produce ROIs as signaling molecules to control processes such as 
 programmed cell death, abiotic stress responses, pathogen defense, and systemic 
signaling. Higher plants contain numerous enzymatic and non-enzymatic reactive 
oxygen intermediate scavengers and antioxidants, both water- and lipid-soluble, 
localized in different cellular compartments. Non-enzymatic antioxidants include 
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(1) pigments, (2) reduced glutathione (GSH), (3) ascorbate (AsA), (4) vitamin E, 
and many others. 

  a -Tocopherol is one of the most acknowledged antioxidant (Polle and Rennenberg 
1994).  a -Tocopherol is the most abundant tocopherol of the four forms found in 
plants ( a -,  b -,  g -, and  d -tocopherol). Its main location is within the chloroplast. 
Ascorbate, and enzymes that metabolize AsA-related compounds, are involved in 
the control of several plant growth processes (Cordoba and Gonzalez-Reyes  1994  ) . 
The most abundant thiol in higher plants is glutathione (Foyer and Halliwell  1976 ; 
Foyer  1997 ; Mullineaux and Creissen  1997  ) . The general picture is that the levels 
of glutathione in its reduced form (GSH) increase several fold during the chilling 
conditions in evergreens (Wingsle and Hällgren, 1993; Wildi and Lütz  1996  ) . Many 
factors, including low temperature and other environmental stresses have been 
shown to change the ratio or redox status of glutathione (GSH/(GSSG + GSH)) 
(Karpinski et al. 1997).  

    4.4   Enzymatic Antioxidants 

 In plant cells the enzymatic scavenging system for reactive oxygen intermediates 
consists of such enzymes as, SOD, CATs, APX, monodehydroascorbatereductase 
(MDAR), dehydroascorbatereductase (DHAR), glutathione peroxidase (GPX), and 
glutathione reductase (GR) (Inzé and Montagu  1995 ; Foyer et al.  1997 ; Mullineaux 
and Creissen  1997  ) . Following are some examples where the expression of these 
antioxidants has been genetically engineered to achieve cold tolerance (Table  2.1 ).  

 The enzyme SOD can be taken as an example of the complexity in studying the 
role of the enzymatic defense system. Different SOD isoforms in plants are differ-
entially expressed and also localized in different compartments within and outside 
the cell (Schinkel et al. 1998). SOD mRNA levels have been observed to increase 
during recovery from naturally established winter stress, a combination of high 
light and low temperature stress (Karpinski et al.  1993 , 1994). SOD isoforms are 
differentially expressed during recovery from winter stress. A comparison of chlo-
roplastic and cytosolic CuZn-SOD mRNA levels showed a 4-fold higher transcript 
level for the chloroplastic form until mid-May (Karpinski et al.  1993  ) . This higher 
transcript level was also associated with a higher chloroplastic CuZn-SOD activity. 
Transcript levels were reduced for both chloroplastic and cytosolic CuZn-SODs and 
reached similar low levels after the repair process of the photosynthetic apparatus 
was completed and photosynthetic capacity had fully recovered from winter stress 
(Karpinski et al.  1993 , 1994). In alfalfa plants,    Camp et al.  (  1994  )  demonstrated that 
Fe-SOD and Mn-SOD have different protective properties in response to chilling 
treatment. 

 In Arabidopsis, a network of at least 152 genes has been reported to be involved 
in managing the level of H 

2
 O 

2
  (   Davletova et al.  2005  ) . The key enzymes involved 

in H 
2
 O 

2
  scavenging are CAT and APX, which catalyze the following reactions:
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     [ ]→ + → +2 2 2APX 2AsA H O 2monodehydroascorbate (mdAsA) 2H O
   

     → → +2 2 2 2[CAT] H O 2H O O     

 CAT acts as a major scavenger of H 
2
 O 

2
  generated during mitochondrial electron 

transport,  b -oxidation of the fatty acids, and most importantly in photorespiratory 
oxidation (Scandalios et al .  1997). GPX has generated much attention as an important 
enzyme in the scavenging of H 

2
 O 

2
  or the products of lipid peroxidation. The role and 

function of the chloroplastic GPX during cold hardening and low temperature-induced 
oxidative stress in trees is under investigation. Expression of genes encoding different 
isoforms of the same ROI scavenging enzyme are regulated differently in response to 
low temperature-induced oxidative stress (Karpinski et al.  1993  ) . CATs have also 
received much attention in respect of plants response to chilling and are thought to 
play a major role in inducing chilling tolerance (Prasad  1996  ) .  

    4.5   Other Involvements (Compatible Solutes, Phytohormones, 
and Others) 

 In response to almost all the stresses, the increase has been observed in the levels of 
compatible solutes, which implies that they are having signi fi cant role in stress 
defense/tolerance. The compatible solutes are organic compounds belonging to a 
chemically diverse small group and are highly soluble. These are also known as 
 osmolytes. These molecules are considered perfectly compatible to cellular  functioning, 
since these do not interfere with cellular metabolism, even at higher concentrations 
(reviewed in Sung et al.  2003  ) . Proline is one of the most studied and extensively 
reported cryo- and osmoprotectant, and has been found to accumulate in response to 
almost all the kinds of abiotic stress conditions like drought, salinity, high tempera-
ture, chilling, UV radiation, and heavy metals (Rhodes and Hanson  1993 ; Nayyar and 
Walia  2003  ) . In case of  Arabidopsis,  it has been seen that proline levels are increased 
and accumulated to considerable level during the stress conditions. In our case of 
review, the integrity of plasma membrane is vital for the low temperature tolerance 
and it has been suggested that proline may interact with the enzymes to protect the 
membrane-proteins’ structure and activity (Hamilton and Heckathorn  2001  ) . Proline 
accumulation has been experimentally observed in cold-shocked greenbean plants 
along with ornithine- d -aminotransferase and proline dehydrogenase enzymes (Ruiz 
et al.  2002  ) . 

 Glycine betaine is another osmolyte coming from the group of betaines (the 
quarternary ammonium compounds in which the nitrogen atom is fully methylated). 
In higher plants glycine betaine is synthesized from choline using two enzymes (1) 
choline monoxygenase and (2) betaine aldehyde dehydrogenase (Rathinasabapathi 
et al.  1997  ) . Glycinebetaine has been seen to be synthesized at increased levels and 
accumulated in many plant species in response to various stresses and thereby 
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 providing tolerance to the stress (Hincha et al.  2006  ) , although its presence in plants 
is not universal as it is not reported to be accumulated in  Arabidopsis,  rice, and 
tobacco. Transgenics having over-accumulation of glycine betaine have been 
reported to have tolerance against different stresses including chilling (Sakamoto 
and Murata  2002  ) . Its exogenous application has also been known to confer stress 
tolerance and increase growth and survival (   Chen et al.  2011  ) . Trehalose is also 
a compatible solute but its roles are still not much unblemished in plant exposed 
to cold shock. Some authors have reviewed that it may be considered as a dou-
ble-faced molecule with both  negative as well as positive effects (Fernandez 
et al.  2010  )  

 Compatible solutes also include sugar alcohols that are acyclic polyols  containing 
three or more hydroxyl groups, which include erythritol,  d -arabitol, ribitol, xylitol, 
sorbitol,  d -mannitol, galactinol, and rhamnitol (Ahmad et al.  1979  ) .   

    5   Modi fi cation in Gene Expression Pattern and Synthesis 
of Stress Responsive Genes 

 At low temperature conditions the plants reorganize their patterns of gene  expression 
and try to maintain homeostasis for obtaining cold stress tolerance (Cook et al. 
 2004  ) . A number of genes have been identi fi ed and reported which express during 
low temperature stress conditions (Mantri et al.  2007  reviewed in    Yadav  2010  ) . The 
recent DNA microarray technique has made it possible to analyze large scale gene 
expression and in last few years numerous stress-induced genes have been identi fi ed 
in different crops not only in chilling stress but in other abiotic stresses also (Bray 
 2004 ; Maruyama et al.  2004 ; Seki et al.  2004 ; Vogel et al.  2005 ; Mantri et al.  2007  ) . 
Some drawbacks of microarray like analysis of arbitrarily selected gene segments 
have been overcome by another technique i.e. serial analysis of gene expression. 
This technique allows the identi fi cation of novel genes under various physiological 
states of plants. These two methods have helped us to reveal that under stress conditions, 
some new genes are expressed and in some cases the expression patterns of some genes 
are altered. Either now they produce the protein products, which directly take part in 
processes against stress, or they regulate the expression of other genes. Based on these 
documentations the product proteins can also be classi fi ed into two types. First are those 
which are involved directly in the processes against the stress e.g. LEA proteins, 
 antifreezins, osmotins, chaperones, mRNA binding proteins, enzymatic proteins for 
osmolytes (proline, trehalose, transporter proteins for proline, sugars, and lipids), 
detoxi fi cation processes and fatty acid metabolism, proteinase inhibiter proteins, and 
water channel proteins(Kreps et al.  2002 ; Seki et al.  2002  ) . The functioning of these 
genes has been proved as in case of some transgenic plants in which these genes are 
over expressed are considerably stress tolerant (Cushman and Bohnert  2000  ) . The 
second type of proteins are those which themselves do not take part directly in the 
stress tolerance mechanisms but further regulate the other signal transduction 
 pathways. The examples of these types of proteins are some transcription factors 
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(Seki et al.  2003  ) . These transcription factors are involved in the regulation of 
expression of other stress responsive genes. Some other examples of stress 
 responsive proteins are kinases, phosphatases, calmodulin binding proteins, and 
14-3-3 proteins. It has been elaborated by some authors that transgenics having 
these genes overexpressed in them are tolerant to stress conditions (Zhang et al. 
2004; Tester and Bacic  2005 ; Vinocur and Altman  2005  ) . 

 The expression of these stress responsive genes (genes expressed in response to 
cold stress are called cold-responsive genes) is vital for the tolerance and acclima-
tion to the low temperature conditions. The vitality of these genes has been proved 
by the help of producing transgenics with overexpression of these genes (Ma et al. 
 2009 ; Sanghera et al.  2011  ) .  

    6   Genetic Engineering Against Cold Stress 

 On exposure of plants to low temperature, a series of genes are induced, the  products 
of which may either directly protect against stress or further control the expression 
of other target genes (Yamaguchi-Shinozaki and Shinozaki  2006  ) . Transgenic plants 
have also been and are also being prepared against cold stress i.e. to achieve cold 
tolerance. These plants have one or more alien genes from stranger or their wild 
relatives, which over-express and regulate the functioning of metabolic process in a 
positive manner against stressful temperatures. The analysis of transgenic plants 
overexpressing one or other genes provides us an understanding of basic  mechanism 
of functioning of stress genes during cold stress exposure (Tayal et al.  2005  ) . 
(Table  2.2 )   

    7   Conclusion 

 The study of plant temperature interactions is of great relevance with respect to the 
global climate change. Even after two decades of molecular and biochemical plant 
metabolomics research we are not yet able to clearly identify the plant thermo-sen-
sors. However, we have considerably grown in the  fi eld of knowledge of various 
cross talking signaling pathways and responses of plants in respect of changes in 
their micro- as well as macro environments. The deeper analysis of these responses 
will bring new insights about the thermo-sensing mechanisms in these sessile poiki-
lotherms. The observable phenological changes are very informative about the small 
periodic responses of plants to the temperature changes. These phenological altera-
tions must be studied as a link to the temperature changes to facilitate the molecular, 
physiological, and biochemical studies related to cold tolerance. These will help to 
reveal about the probable stimulating inputs of the temperature. The genetic studies 
besides this will help to produce the computer models to understand the problem in 
digitized way, which will take the comprehensive approaches in hypothesis making 
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and testing to new horizons. Our group is working to explore these issues based on 
study of phenology, physiology, biochemistry, and molecular biology of different 
crops under thermal stresses.      
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